
Dynamical Systems

Tutorial 11 - Lyapunov exponents and other

indicators of chaos

June 26, 2019

Introduction
Recall that we defined chaos using the definition from Devaney:

Let V be a set. f : V →V is said to be chaotic on V if:

1. f has sensitive dependence on initial conditions:

∃δ > 0 : ∀x ∈V,N neighborhood o f x,∃y ∈V : ‖ f n(x)− f n(y)‖> δ

We emphasize that not all points near x need eventually separate from x under iter-
ation, but there must be at least one such point in every neighborhood of x. If a map
possesses sensitive dependence on initial conditions, then for all practical purposes,
the dynamics of the map defy numerical computation. Small errors in computation
which are introduced by round-off may become magnified upon iteration. The re-
sults of numerical computation of an orbit, no matter how accurate, may bear no
resemblance whatsoever with the real orbit.

2. f is topologically transitive:

∀open sets U,W ⊂V,∃k > 0 : f k(U)∩W 6= /0

Enough to show that the map has a dense orbit.

3. periodic points are dense in V

(may be switched with condition of a compact phase space - this is the defini-
tion in Meiss. For a discussion of the different definitions, see ”Aulbach, B., and
Kieninger, B. (2001). On three definitions of chaos.”)

The concept of ”sensitive dependence” requires that nearby orbits eventually separate;
however, the rate of separation is not specified. Also, this is not enough for chaos. There
are non-chaotic systems whose trajectories separate exponentially in time (a linear hyper-
bolic flow ẋ = Kx, K > 0) and those that separate at a polynomial rate (like the flow on
the cylinder: ż = 0, θ̇ = z).

Given a dynamical system, how do we know if it’s chaotic? We would like to have
a heuristic measure - this is the Lyapunov exponent. Positive values signify exponential
separation of close initial conditions. Generally, there appears to be a dichotomy between
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systems for which nearby orbits separate linearly and truly chaotic systems whose orbits
separate exponentially. We say that two orbits of a flow separate exponentially when
|φt(y)− φt(x)| ∼ ceλ t and λ > 0. In a compact domain, this separation rate cannot go
on forever. Thus, exponential separation is required for initially infinitesimally close
trajectories in chaotic systems. However, we emphasize that a positive value of λ do
not guarantee chaos - thus the Lyapunov exponent is only an indicator of chaos.

Lyapunov exponents

Lyapunov exponent in a map (Dorfman)
Consider a differentiable map M : (0,1)→ (0,1). Examine a small interval (x0,x0+δx0).
M maps this interval to (M(x0),M(x0 + δx0)) = (x1,x1 + δx1), then to (M(x1),M(x1 +
δx1)) = (x2,x2 + δx2), etc. After a large number of steps n, the interval of length δx0
may become exponentially large or small, δx0 → δxn ≈ δx0 exp(nλ (x0)), with λ (x0)
larger or smaller than zero. If, after a number of steps, the interval gets folded or cut, then
the scaling factor may no longer be approximated in this simple way. Therefore the limit
δx0→ 0 is taken to obtain an expression for λ (x0).

Thus, we define a Lyapunov exponent λ (x0) at a point x0 by:

λ (x0) = limsup
n→∞

lim
δx0→0

1
n

ln
∣∣∣∣Mn(x0 +δx0)−Mn(x0)

δx0

∣∣∣∣ , (1)

where Mn(x) = M(M(...(M(x)...))), that is, the nth iterate of the map at point x.
The Lyapunov exponent can be written more simply as a derivative,

λ (x0) = limsup
n→∞

1
n

ln
∣∣∣∣dMn(x0)

dx0

∣∣∣∣ . (2)

Using the chain rule, dMn(x0)
dx0

= M′(xn−1)M′(xn−2)...M′(x0), so a convenient form for the
Lyapunov exponent of this map is

λ (x0) = limsup
n→∞

1
n

ln

∣∣∣∣∣n−1

∏
i=0

M′(xi)

∣∣∣∣∣= limsup
n→∞

1
n

n−1

∑
i=0

ln |M′(xi)|. (3)

Thus, the Lyapunov exponent measures the rate of separation or approach of two
nearby phase points as they each follow the trajectory determined by their respective ini-
tial conditions. A positive Lyapunov exponent means that two nearby points will separate
exponentially with the number of steps, or, for a flow, with time. This is an expression of
the sensitivity of the dynamics to the initial conditions - a small range of initial states will
sample a large region of phase space. Extending this idea to a multidimensional map is
similar.

Example: Tripling map on a torus
For the map M : θ → 3θ mod (2π), it’s easy to see that λ (θ) = ln3 for all values of

θ .

Example: Baker’s map
There are 2 Lyapunov exponents, ± ln2.
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Lyapunov exponents in a multidimensional flow
In order to obtain an asymptotic expression for λ in the case of a general flow ẋ = f (x),
we want to linearize around an arbitrary orbit. Given an orbit ϕt(x∗), consider a trajectory
that starts close, ϕt(x∗+ εv0). For a C1 flow,

ϕt(x∗+ v0) = ϕt(x∗)+Dxϕt(x∗)v0 +o(|v0|). (4)

The deviation vector, defined as the first order approximation of the difference between
the trajectories ϕt(x∗+ v0)−ϕt(x∗), satisfies

v(t) = Dxϕt(x∗)v0 (5)

and its time evolution is
v̇ = D f (ϕt(x∗))v≡ A(t)v. (6)

For simplicity of our notation, we define the matrix Φ(t,x) = Dxϕt(x). By this definition,
v(t) = Φ(t,x)v0, and Φ̇ = AΦ.

In the case of linearization around a fixed point, A is independent of time and its
eigenvalues can be found, which describe the linearized motion around the fixed point.
However, in the general case we show here, A depends on time.

Now, we want to define a Lyapunov exponent as a number λ such that, asymptotically,
|Φ(t,x)v| ∼ eλ t |v|. Why should such a λ exist? Could the separation be faster than
exponential?

Lemma 7.3 (M): If Φ(t,x) solves Φ̇= AΦ, and ‖A‖≤K∀t, then for all v exist constants
c,c′ such that

C′e−Kt ≤ |Φ(t,x)v| ≤CeKt ∀t ≥ 0. (7)

The condition of boundedness of ‖A‖ is satisfies for a compact set and a continuous f
of the flow. We won’t prove this lemma, the proof appears in (M). However we use it to
show that ln |Φv|

t is bounded for t ≥ 0, for any v.
Thus, we define the Lyapunov exponents as the supremum limits:

λ (x,v) = limsup
t→∞

1
t

ln |Φ(t,x)v|= limsup
t→∞,v→0

1
t

ln |ϕt(x+ v)−ϕt(x)
v

|. (8)

The lemma guarantees that this limit exists.
Note that the value of λ depends on the direction of v! In fact, for an n-dimensional

phase space, a system has in general n distinct Lyapunov exponents relating to the differ-
ent linearly independent directions for the deviation vector:

Lemma 7.5 (M): If ϕt(x) is bounded then it has at most n distinct Lyapunov exponents.
Proof: Since the flow is bounded, the Jacobian is bounded and the supremum limit ex-

ists for all v. Taking two linearly independent vectors v1 and v2 with respective Lyapunov
exponents λ1 and λ2, their linear combination v = av1 +bv2 will grow asymptotically as
max{λ1,λ2}. Since there are n linearly independent vectors, there are at most n Lyapunov
exponents.
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limsup
t→∞

1
t

ln(exp(t sin ln |t|)x0) = 1 (9)

Comments:
* The largest Lyapunov exponent is known as the Lyapunov Characteristic Exponent,

or LCE. A positive LCE indicates chaos.
* For any flow generated by the equation ẋ = f (x), at least one of the Lyapunov

exponents must vanish, because in the direction of the flow, the deviation vector grows
linearly with time.

* For a volume-preserving flow (such as a Hamiltonian flow), the sum of the Lyapunov
exponents must be zero. For a dissipative system, the sum is negative.

* In Hamiltonian systems with n degrees of freedom there are 2n Lyapunov exponents,
and they come in pairs: if we arrange them in increasing order, λ1 ≤ λ2 ≤ ...≤ λ2n, then
λm =−λ2n−m, and there are at least two directions in which the exponent disappears - in
the direction of the flow and in the direction of the energy gradient. This is an expression
of the Liouville theorem.

Numerical calculation of the Lyapunov Characteristic Exponent
For almost all initial tangent vectors v, λ (x,v) equals the LCE, because almost all initial
tangent vectors will have some component in the maximal direction. Therefore, given
a dynamical system, choose some v0 around a (numerically) calculated orbit x(t), and
integrate the equation for v(t), v̇ = Mv. Thus obtain numerically the deviation distance,
d(t) = |v(t)|, where d0 = 1 for convenience.

Potential problem: If the norm d(t) increases exponentially, there will be a risk of
computational errors. Instead, the scheme suggested by Benettin et al. 1976 is commonly
used. Choose a small fixed interval τ , and renormalize v to unity every τ time units.
Thus, iteratively compute dk = |vk−1(τ)| where vk(0) =

vk−1(τ)
dk

, and define the averaged
Lyapunov exponent

λn =
1

nτ

n

∑
i=1

lndi. (10)

If τ is small enough, it can be shown that

λ∞ = lim
n→∞

λn = λ1 (11)

exists and is independent of τ .
There are many alternative methods to calculate the largest Lyapunov exponent and

the entire spectrum; see review by Skokos for a partial summary.
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Kolmogorov-Sinai entropy

Heuristic considerations:

When a system exhibits exponential separation, one gains information about initial con-
ditions by iterating the system. That is, suppose we can distinguish two points only if
they are separated by a distance δ , the resolution parameter, and suppose we are given an
initial set of this order of magnitude, denoted A. Then we cannot resolve two points in A
then, but after a time t the initial set will be stretched to a length of order δ exp(λ+t), and
we can easily resolve the images of points in the initial set. Thus, by looking at successive
images of the initial set we learn more and more about the location of points in the initial
region, and the information is growing at an exponential rate. This rate is measured by
the Kolmogorov-Sinai (KS) entropy, denoted hKS.

Definition of the KS entropy, described by example of the Baker’s Map (Dorfman)

Consider a phase space Λ of finite total measure. Suppose we decompose Λ into a collec-
tion of non-overlapping sets {Wi} s.t.

{Wi : Λ = ∪iWi,Wi∩Wj = /0 f or i 6= j,µ(Wi)> 0}.

This is a partition of Λ. Given a partition, we can create finer and finer partitions by
examining the pre-images of a partition and taking intersections of the original partition
with its pre-images.

As an example, consider the partition of the unit square of the baker’s map W0,W1:

The inverse Baker’s Map maps the two sets to B−1Wi. The intersections of Wi with
B−1Wj leads to a new partition of the unit square into 4 sets:

Wi j = {x : x ∈Wi,B(x) ∈Wj}/

This partition is the V -sum of the intersections of the partitions. By running this procedure
backwards and taking further intersections, finer partitions are obtained, and we get a
collection of partitions that contain more and more details about the trajectory of a point:

{{Wi}.{Wi∩B−1(Wj)},{Wi∩B−1(Wj)∩B−2(Wk)}, ...}

If we know x0 ∈W0∩B−1(W1)∩B−2(W0), then we know that B(x0)∈W1 and B2(x0)∈W0.
Thus, by identifying the element of the partition to which a point belongs, one can map
out the entire history of a point.

What we would like to know (and quantify) is how fine the partition is becoming -
indicator of mixing of the phase space and of our ability to use larger and larger parts of
the trajectory to uniquely specify a particular initial point.

KS defined the entropy of a partition as

H({Wi}) =−∑
i

µ(Wi ln(µ(Wi)).
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When the partition is the trivial partition, W = Λ, then H(Λ) = 0. For the example of the
Baker’s Map, the partitions have entropies:

H1 ≡ H(W ) =−1
2
(ln(

1
2
)+ ln(

1
2
))

H2 ≡ H(W ∩B−1(W )) =−4
1
4

ln(
1
4
)

etc. To indicate how much information is gained per step, define

h = lim
n→∞

1
n

Hn.

This is, in a sense, the measure for the rate at which information is produced for someone
who observes the system with a limited resolution.

The KS entropy is defines as the supremum of the above expression over all possible
(initial) partitions:

hKS = sup
W

h.

A partition that gives the KS entropy directly is called a generating partition.
In the rotation map, xn→ xn+α mod 1, a partition into two parts will stay a partition

into two parts when the system is run backwards. After n iterations, the circle will be
partitioned into 2n intervals, the entropy depends logarithmically on n and the KS entropy
is 0.

In the Baker’s Map, the partition we showed is the generating partition, and leads
directly to hKS = ln2. Note that this is exactly the value of the positive Lyapunov exponent
of the same system - this is not a coincidence.

Pesin’s theorem

For closed Anosov hyperbolic systems, the KS entropy is equal to the sum of the positive
Lyapnov exponents.

* A system with a positive KS entropy is called a K-system.
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